Pular para o conteúdo principal

 

 

TEORIA GRACELI GERAL E UNIFICATÓRIA DIMENSIONAL.

TEORIA GRACELI GERAL E UNIFICATÓRIA DIMENSIONAL.


ONDE CADA INFINITA PARTÍCULA TEM INFINITAS DIMENSÕES FORMANDO UM SISTEMA GERAL UNIFICATÓRIO COM PADRÕES DE VARIAÇÕES CONFORME AS PARTÍCULA QUE NO CASO PASSAM A REPRESENTAR DIMENSÕES, PADRÕES DE ENERGIAS E E PADRÕES POTENCIAIS DE TRANSFORMAÇÕES, INTERAÇÕES CATEGORIAS FÍSICAS DE GRACELI E OUTROS.


NA TEORIA DAS CORDAS PARTÍCULAS SÃO REPRESNTADAS POR VIBRAÇÕES.


JÁ NA TEORIA GRACELI GERAL E UNIFICATÓRIA DIMENSIONAL. NO CASO SÃO REPRENTADOS POR DIMENSÕES FÍSICAS E QUÍMICA DE GRACELI.



TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

 sistema indeterminístico Graceli ;

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




 SISTEMA GRACELI INFINITO-DIMENSIONAL.


COM  ELEMENTOS DO SISTEMA SDCTIE GRACELI, TENSOR G+ GRACELI CAMPOS E ENERGIA, E ENERGIA, E CONFIGURAÇÕES ELETRÔNICAS DOS ELEMENTOS QUÍMICO, E OUTRAS ESTRUTURAS.

ESTADO E NÚMERO QUÂNTICO, NÍVEIS DE ENERGIA DO ÁTOMO, FREQUÊNCIA. E OUTROS.


  TENSOR G+ GRACELI, SDCTIE GRACELI, DENSIDADE DE CARGA E DISTRIBUIÇÃO ELETRÔNICA, NÍVEIS DE ENERGIA, NÚMERO E ESTADO QUÂNTICO. + POTENCIAL DE SALTO QUÂNTICO RELATIVO AOS ELEMENTOS QUÍMICO COM O SEU RESPECTIVO  E ESPECÍFICO NÍVEL DE ENERGIA.



SISTEMA MULTIDIMENSIONAL  GRACELI

ONDE A CONFIGURAÇÃO ELETRÔNICA TAMBÉM PASSA A SER DIMENSÕES FÍSICO-QUÍMICA DE GRACELI.


Configuração eletrônica dos elementos químicos. [parte do sistema Graceli infinito-dimensional].


DENTRO DE UMA CONCEPÇÃO QUE CADA ÁTOMO É FORMADO DE INFINITAs OUTRAS PARTÍCULAS, E COM INFINITAS OUTRAS ENERGIAS, INTERAÇÕES, TRANSFORMAÇÕES, E OUTROS FENÔMENOS, LOGO SE TEM EM CADA ÁTOMO E OU ELEMENTO QUÍMICO INFINITAS OUTRAS DIMENSÕES. COM INFINITAS VARIAÇÕES NAS CATEGORIAS DE GRACELI , QUE  SÃO: OS POTENCIAIS, TIPOS, NÍVEIS, E TEMPO DE AÇÃO ESPECÍFICO  DO FENÔMENO.

ONDE NOS SISTEMAS  DE GRACELI CATEGORIAS,  FENÔMENOS, ESTADOS, ENERGIAS, ESTRUTURAS, E OUTROS SÃO TIPOS E FORMAS DE DIMENSÕES..


FLUXOS ALEATÓRIOS DE ENERGIAS ELÉTRICA,  E FLUXOS DE SALTOS QUÂNTICOS INFINITESIMAIS E INDETERMINADOS.
SENDO QUE VARIAM CONFORME O SISTEMA INFINITO-DIMENSIONAL.


O SISTEMA INFINITO-DIMENSIONAL DE GRACELI, ASSIM, COMO O SISTEMA SDCTIE GRACELI [SISTEMA ENVOLVENDO DIMENSÕES DE GRACELI, E SUAS CATEGORIAS, ESTADOS FÍSICOS E ESTADOS FÍSICOS DE GRACELI, TRANSFORMAÇÕES E INTERAÇÕES], E OS TENSORES DE GRACELI TEM AÇÃO EM TODA A FÍSICA EM TODOS OS SEUS RAMOS E E DIVISÕES, ASSIM, COMO A QUÍMICA E A BIOLOGIA, QUE TODOS ESTES SE FUNDAMENTEM EM ENERGIAS, ONDAS, ESTRUTURAS, CATEGORIAS, ESTADOS, ESPECTROS, DIMENSÕES, E OUTROS.

OU SEJA, DENTRO DE UM SISTEMA GERAL DE GRACELI TODA FÍSICA DAS ESTRTURUAS, ENERGIAS, ONDAS, DIMENSÕES, ESTADOS, E CATEGORIAS. ESTÃO INSERIDOS NESTES SISTEMA DE GRACELI.

dentro de uma concepção que a matéria é infinitésima em termos de tipos e ínfimos diâmetro, logo esta diferenciação faz com que cada ínfima e infinitésima parte tenha ações, transformações, interaçõs, potenciaidades, e outros diferentes de uma das outras. logo se tem infinitas dimensões para cada ínfima e infinitésima parte e tipo.



VEJAMOS;






Na física, o coeficiente de difusão ou difusividade de massa é um valor que representa a facilidade com que cada soluto em particular se move em um solvente determinado. É uma proporcionalidade constante entre o fluxo molar devido a difusão molecular e o gradiente na concentração de espécies (ou pela força condutora para a difusão). A difusividade é encontrada na lei de Fick e numerosas outras equações da físico-química, relacionadas com a difusão de matéria ou energia

É geralmente adequada para um dado par de espécies químicas. Para um sistema multicomponente, é recomendável para cada par de espécies no sistema.

Depende de três fatores:

Quanto maior a difusividade (de uma substância em relação à outra), mais rápido elas difundem-se uma na outra.

Este coeficiente tem unidades no SI de m²/s (comprimento²/tempo).

Dependência da temperatura do coeficiente de difusão

Tipicamente, o coeficiente de difusão de um composto é aproximadamente 10.000 vezes maior no ar que em água. Dióxido de carbono, por exemplo, no ar tem um coeficiente de difusão de 16 mm²/s, e em água seu coeficiente é 0,0016 mm²/s[1].

O coeficiente de difusão em sólidos a diferentes temperaturas é frequentemente encontrado e bem predito pela equação

///////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

onde

  •  é o coeficiente de difusão
  •  é o coeficiente de difusão máximo (a temperatura infinita)
  •  é a energia de ativação para difusão em dimensões de [energia (quantidade de substância)−1]
  •  é a temperatura em unidades de [temperatura absoluta] (kelvins ou graus Rankine)
  •  é a constante dos gases em dimensões de [energia temperatura−1 (quantidade de substância)−1]

Uma equação desta forma é conhecida como a equação de Arrhenius.

Uma dependência aproximada do coeficiente de difusão da temperatura em líquidos pode frequentemente ser encontrado usando a equação de Stokes-Einstein, a qual prevê que:

///////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

onde:

T1 e T2 denota temperaturas 1 e 2, respectivamente
D é o coeficiente de difusão (cm²/s)
T é a temperatura absoluta (K),
μ é a viscosidade dinâmica do solvente (Pa·s)

A dependência do coeficiente de difusão da temperatura para gases pode ser expressa usando-se a teoria de Chapman-Enskog (predições precisas na média em aproximadamentre 8%)[2]:

///////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

onde:

  • 1 e 2 indexas os dois tipos de moléculas presentes na mistura gasosa
  • T – temperatura (K)
  • M – massa molar (g/mol)
  • p – pressão (atm)
  •  – o 
  • ///////

    TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

    sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

    diâmetro médio de colisão (os valores são tabulados[3]) (Å)
  • Ω – um integral de colisão dependente da temperatua (os valores são tabulados[3] mas usualmente de ordem 1) (adimensional).
  • D – coeficiente de difusão (o qual é expresso em cm2/s quando as outras magnitudes são expressas nas unidades dadas acima[2]).

Dependência da pressão do coeficiente de difusão

Para autodifusão em gases a duas pressões diferentes (mas a mesma temperatura), a seguinte equação empírica tem sido sugerida:[2]

///////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

onde:

P1 e P2 denotam pressões 1 e 2, respectivamente
D é o coeficiente de difusão (m²/s)
ρ é a densidade mássica do gás (kg/m3)

Difusividade efetiva em meio poroso

O coeficiente de difusão efetiva[4] descreve a difusão através dos espaços dos poros de um meio poroso. Ele é macroscópico na natureza, porque não são poros individuais mas o espaço poroso inteiro que necessita ser considerado. O coeficiente de difusão efetiva para transporte através dos poros, De, é estimado como segue:

///////

TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

onde:

  • D - coeficiente de difusão em gas ou líquido preenchendo os poros (m2s−1)
  • εt - porosidade disponível para o transporte (adimensional)
  • δ - constrictividade (adimensional)
  • τ - tortuosidade (adimensional)

porosidade disponível para o transporte é igual à porosidade total menos os poros que, devido ao seu tamanho, não são acessíveis às partículas de difusão, e menos becos sem saída e poros cegos (i.e., poros sem estar conectado com o resto do sistema de poros).

A constrictividade descreve o abrandamento da difusão por aumento da viscosidade em poros estreitos como resultado de uma maior proximidade com a parede de poros médios. É uma função do diâmetro dos poros e o tamanho das partículas em difusão.

Comentários

Postagens mais visitadas deste blog